SEVEN THEOREMS IN THE PROBLEM OF PLATEAU

By Jesse Douglas
Department of Mathematics, Massachusetts Institute of Technology

Communicated November 24, 1931
The writer has recently completed the redaction of the manuscript of a paper presenting in complete form his results on the problem of Plateau for two contours; most of these results have been in my possession for some time past. ${ }^{1}$ They are embodied in the form of seven theorems, which it is the purpose of this note to state. The complete paper will be published in the Journal of Mathematics and Physics of the Massachusetts I stitute of Technology.

The two contours Γ_{1}, Γ_{2} are Jordan curves in euclidean space, of n dimensions for theorems I, V, of two dimensions for theorem IV, and of three dimensions for theorems II, III, VI, VII. Always, Γ_{1} and Γ_{2} are supposed not to intersect one another.

With Γ_{1}, Γ_{2} are associated three positive numbers, finite or $+\infty$:

$$
m\left(\Gamma_{1}\right), \quad m\left(\Gamma_{2}\right), \quad m\left(\Gamma_{1}, \Gamma_{2}\right)
$$

Concretely, these are, respectively, the least areas that can be bour.ded by Γ_{1}, by Γ_{2}, by Γ_{1} acd $\Gamma_{2} ;{ }^{2}$ but for our analysis they are the lower bounds of certain functionals

$$
A\left(g_{1}\right), A\left(g_{2}\right), A\left(g_{1}, g_{2} ; q\right)
$$

where g_{1}, g_{2} are arbitrary parametric representations of Γ_{1}, Γ_{2} and q is a parameter, $0<q<1$. Always, there is the inequality
or

$$
e\left(\Gamma_{1}, \Gamma_{2}\right)=m\left(\Gamma_{1}\right)+m\left(\Gamma_{2}\right)-m\left(\Gamma_{1}, \Gamma_{2}\right) \geqq 0 .
$$

The functional of pairs of contours $e\left(\Gamma_{1}, \Gamma_{2}\right)$ is defined by the last formula for the case of finite $m\left(\Gamma_{1}, \Gamma_{2}\right)$. When $m\left(\Gamma_{1}, \Gamma_{2}\right)=+\infty$, we use the iunctional:

$$
\bar{e}\left(\Gamma_{1}, \Gamma_{2}\right)=\lim \sup e\left(\Gamma_{1}^{\prime}, \Gamma_{2}^{\prime}\right) \geqq 0
$$

where $\Gamma_{1}^{\prime}, \Gamma_{2}^{\prime}$, contours with finite $m\left(\Gamma_{1}^{\prime}, \Gamma_{2}^{\prime}\right)$, (e.g., polygons), tend to Γ_{1}, Γ_{2}.

In theorems I, II, III, $m\left(\Gamma_{1}, \Gamma_{2}\right)$ is supposed finite, while in theorems V, VI, VII the contours are arbitrary Jordan curves, generally with $m\left(\Gamma_{1}, \Gamma_{2}\right)=+\infty$.

Minimal surface means one defined by the Weierstrass formulas:

$$
\begin{aligned}
& x_{i}=R \quad F_{i}(w) \\
& \sum_{i=1}^{n} F_{i}^{12}(w)=0
\end{aligned}
$$

Theorem I. Let Γ_{1}, Γ_{2} be two Jordan curves not intersecting one another; let $m\left(\Gamma_{1}, \Gamma_{2}\right)$ be finite, and suppose we have the strict inequality:
or

$$
\begin{gathered}
m\left(\Gamma_{1}, \Gamma_{2}\right)<m\left(\Gamma_{1}\right)+m\left(\Gamma_{2}\right), \\
e\left(\Gamma_{1}, \Gamma_{2}\right)>0 .
\end{gathered}
$$

Then there exists a doubly-connected minimal surface bounded by Γ_{1}, Γ_{2}.
The area of this surface is $m\left(\Gamma_{1}, \Gamma_{2}\right)$.
Theorem II. Let Γ_{1}, Γ_{2} be two Jordan curves not intersecting one another, and let $m\left(\Gamma_{1}, \Gamma_{2}\right)$ be finite.

If the minimal surfaces M_{1} and M_{2}, determined by Γ_{1} and Γ_{2} taken separately, ${ }^{3}$ have in common a point that is regular for both of them $\left(\sum_{i=1}^{n}\left|F_{i}^{1}(w)\right|^{2}>0\right)$, then there exists a doubly-connected minimal surface bounded by Γ_{1} and Γ_{2}.

The area of this surface is less than the sum of the areas of M_{1} and M_{2}.
Theorem III. Let Γ_{1} and Γ_{2}, Jordan curves with finite $m\left(\Gamma_{1}, \Gamma_{2}\right)$, interlace. Then Γ_{1}, Γ_{2} are the boundaries of a doubly-connected minimal surface.

The writer's theory of the problem of Plateau includes the conformal mapping of plane regions as the special case $n=2$. It is in this sense that the following theorem is to be understood.

Theorem IV. Let Γ_{1}, Γ_{2} denote any two Jordan curves in the plane which enclose between them a region R. In the equations

$$
Z=g_{1}(z), Z=g_{2}(z)
$$

where Z and z denote complex variables, let Z describe Γ_{1}, Γ_{2}, respectively, when z describes two concentric circles C_{1}, C_{2} of radii $1, q ; 0<q<1$.

The range of values of the functional
$A\left(g_{1}, g_{2} ; q\right)=\frac{1}{4 \pi} \sum_{\alpha \beta} \int_{C_{\alpha}} \int_{C_{\beta}}\left|g_{\alpha}(z)-g_{\beta}(\zeta)\right|^{2} P(z, \zeta ; q) d z d \zeta,{ }^{4}$
$\left(P(z, \zeta ; q)\right.$ being a certain elliptic function with periods $\left.2 \pi, 2 \sqrt{-1} \log \frac{1}{q}\right)$, when all parametric representations g_{1}, g_{2} of Γ_{1}, Γ_{2} and all values of q are considered, will consist exactly of all positive real numbers \geqq the inner area ${ }^{5}$ of the region R. This minimum value will be attained for a certain (essentially
uniquely determined) parametric representation

$$
Z=g_{1}^{*}(z), Z=g_{2}^{*}(z)
$$

together with a unique value q^{*} of q.
Then the integral formula of Cauchy:

$$
W=\frac{1}{2 \pi i} \int_{C_{1}} \frac{g_{1}^{*}(z) d z}{z-w}+\frac{1}{2 \pi i} \int_{C_{2}} \frac{g_{2}^{*}(z) d z}{z-w}, 4
$$

defines a conformal transformation $w \longrightarrow W$ of the circular ring between C_{1} and C_{2} into the region R between Γ_{1} and Γ_{2}; this conformal transformation, furthermore, attaches continuously to the topological correspondence g_{1}^{*}, g_{2}^{*} between the boundaries.

In theorems V, VI, VII the restriction of finite $m\left(\Gamma_{1}, \Gamma_{2}\right)$ is removed from theorems I, II, III.

Theorem V. Any two Jordan curves Γ_{1}, Γ_{2}, not intersecting one another, for which

$$
\bar{e}\left(\Gamma_{1}, \Gamma_{2}\right)>0
$$

are the boundaries of a doubly-connected minimal surface.
Theorem VI. If Γ_{1}, Γ_{2} are any two Jordan curves not intersecting one another, and the minimal surfaces M_{1} and M_{2} determined by Γ_{1} and Γ_{2} separately ${ }^{3}$ have a regular point in common, then there exists a doubly-connected minimal surface bounded by Γ_{1}, Γ_{2}.

Theorem VII. Any two interlacing Jordan curves are the boundaries of a doubly-connected minimal surface.

1 "A General Formulation of the Problem of Plateau," presented to the American Mathematical Society, Oct. 26, 1929, abstract in Bull. Am. Math. Soc., 36, 50 (1930). "The Problem of Plateau for Two Contours," communicated to the same society, Sept. 27, 1930, abstract in the same publication, 36, 797 (1930).
${ }^{2}$ The surfaces bounded by Γ_{1} and Γ_{2} separately are supposed to be simply-connected; those bounded by Γ_{1}, Γ_{2} jointly, doubly-connected.
${ }^{3}$ The existence of the minimal surfaces M_{1} and M_{2} is assured by the writer's paper "Solution of the Problem of Plateau," Trans. Amer. Math. Soc., 33, 1, 263-321 (Jan., 1931), which gave the first general solution of the Plateau problem for a single contour.
${ }^{4}$ The sense of integration around C_{1}, C_{2} is such that the circular ring between them is on the left.
${ }^{5}$ The upper bound of the area of a ring-shaped polygon whose boundaries P_{1}, P_{2} encircle Γ_{2} and are encircled by Γ_{1}; this is not always the same as the lower bound of the area of a ring-shaped polygon whose outer boundary P_{1} encircles Γ_{1} and whose inner boundary P_{2} is encircled by Γ_{2} (outer area).

