SEVEN THEOREMS IN THE PROBLEM OF PLATEAU

By JESSE DOUGLAS

DEPARTMENT OF MATHEMATICS, MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Communicated November 24, 1931

The writer has recently completed the redaction of the manuscript of a paper presenting in complete form his results on the problem of Plateau for two contours; most of these results have been in my possession for some time past.¹ They are embodied in the form of seven theorems, which it is the purpose of this note to state. The complete paper will be published in the *Journal of Mathematics and Physics* of the Massachusetts I stitute of Technology.

The two contours Γ_1 , Γ_2 are Jordan curves in euclidean space, of *n* dimensions for theorems I, V, of two dimensions for theorem IV, and of three dimensions for theorems II, III, VI, VII. Always, Γ_1 and Γ_2 are supposed not to intersect one another.

With Γ_1 , Γ_2 are associated three positive numbers, finite or $+\infty$:

$$m$$
 (Γ_1), m (Γ_2), m (Γ_1 , Γ_2).

Concretely, these are, respectively, the least areas that can be bounded by Γ_1 , by Γ_2 , by Γ_1 and Γ_2 ;² but for our analysis they are the lower bounds of certain functionals

$$A(g_1), A(g_2), A(g_1, g_2; q),$$

where g_1 , g_2 are arbitrary parametric representations of Γ_1 , Γ_2 and q is a parameter, 0 < q < 1. Always, there is the inequality

$$m(\Gamma_1, \Gamma_2) \leq m(\Gamma_1) + m(\Gamma_2),$$

$$e(\Gamma_1, \Gamma_2) = m(\Gamma_1) + m(\Gamma_2) - m(\Gamma_1, \Gamma_2) \geq 0.$$

or

The functional of pairs of contours
$$e(\Gamma_1, \Gamma_2)$$
 is defined by the last formula for the case of finite $m(\Gamma_1, \Gamma_2)$. When $m(\Gamma_1, \Gamma_2) = +\infty$, we use the functional:

$$e(\Gamma_1, \Gamma_2) = \lim \sup e(\Gamma'_1, \Gamma'_2) \ge 0,$$

where Γ'_1 , Γ'_2 , contours with finite $m(\Gamma'_1, \Gamma'_2)$, (e.g., polygons), tend to Γ_1 , Γ_2 .

In theorems I, II, III, $m(\Gamma_1, \Gamma_2)$ is supposed finite, while in theorems V, VI, VII the contours are arbitrary Jordan curves, generally with $m(\Gamma_1, \Gamma_2) = +\infty$.

Minimal surface means one defined by the Weierstrass formulas:

$$x_{i} = R F_{i}(w),$$
$$\sum_{i=1}^{n} F_{i}^{12}(w) = 0.$$

THEOREM I. Let Γ_1 , Γ_2 be two Jordan curves not intersecting one another; let $m(\Gamma_1, \Gamma_2)$ be finite, and suppose we have the strict inequality:

$$m(\Gamma_1, \Gamma_2) < m(\Gamma_1) + m(\Gamma_2),$$

 $e(\Gamma_1, \Gamma_2) > 0.$

or

Then there exists a doubly-connected minimal surface bounded by Γ_1 , Γ_2 . The area of this surface is $m(\Gamma_1, \Gamma_2)$.

THEOREM II. Let Γ_1 , Γ_2 be two Jordan curves not intersecting one another, and let $m(\Gamma_1, \Gamma_2)$ be finite.

- If the minimal surfaces M_1 and M_2 , determined by Γ_1 and Γ_2 taken separately,³ have in common a point that is regular for both of them $\left(\sum_{i=1}^{n} |F_i^1(w)|^2 > 0\right)$,
- then there exists a doubly-connected minimal surface bounded by Γ_1 and Γ_2 . The area of this surface is less than the sum of the areas of M_1 and M_2 .

THEOREM III. Let Γ_1 and Γ_2 , Jordan curves with finite $m(\Gamma_1, \Gamma_2)$, interlace. Then Γ_1, Γ_2 are the boundaries of a doubly-connected minimal surface.

The writer's theory of the problem of Plateau includes the conformal mapping of plane regions as the special case n = 2. It is in this sense that the following theorem is to be understood.

THEOREM IV. Let Γ_1 , Γ_2 denote any two Jordan curves in the plane which enclose between them a region R. In the equations

$$Z = g_1(z), Z = g_2(z),$$

where Z and z denote complex variables, let Z describe Γ_1 , Γ_2 , respectively, when z describes two concentric circles C_1 , C_2 of radii 1, q; 0 < q < 1.

The range of values of the functional

 $A(g_1, g_2; q) = \frac{1}{4\pi} \sum_{\alpha\beta} \int_{C_{\alpha}} \int_{C_{\beta}} |g_{\alpha}(z) - g_{\beta}(\zeta)|^2 P(z, \zeta; q) dz d\zeta^4$ $\left(P(z, \zeta; q) \text{ being a certain elliptic function with periods } 2\pi, 2\sqrt{-1} \log \frac{1}{q}\right),$ when all parametric representations g_1, g_2 of Γ_1, Γ_2 and all values of q are considered, will consist exactly of all positive real numbers \geq the inner area⁵ of the region R. This minimum value will be attained for a certain (essentially

Vol. 18, 1932

uniquely determined) parametric representation

$$Z = g_1^*(z), Z = g_2^*(z),$$

together with a unique value q^* of q.

Then the integral formula of Cauchy:

$$W = \frac{1}{2\pi i} \int_{C_1} \frac{g_1^*(z) \, dz}{z - w} + \frac{1}{2\pi i} \int_{C_2} \frac{g_2^*(z) \, dz}{z - w}, \, 4$$

defines a conformal transformation $w \longrightarrow W$ of the circular ring between C_1 and C_2 into the region R between Γ_1 and Γ_2 ; this conformal transformation, furthermore, attaches continuously to the topological correspondence g_1^* , g_2^* between the boundaries.

In theorems V, VI, VII the restriction of finite $m(\Gamma_1, \Gamma_2)$ is removed from theorems I, II, III.

THEOREM V. Any two Jordan curves Γ_1 , Γ_2 , not intersecting one another, for which

$$\overline{e}(\Gamma_1, \Gamma_2) > 0,$$

are the boundaries of a doubly-connected minimal surface.

THEOREM VI. If Γ_1 , Γ_2 are any two Jordan curves not intersecting one another, and the minimal surfaces M_1 and M_2 determined by Γ_1 and Γ_2 separately³ have a regular point in common, then there exists a doubly-connected minimal surface bounded by Γ_1 , Γ_2 .

THEOREM VII. Any two interlacing Jordan curves are the boundaries of a doubly-connected minimal surface.

¹ "A General Formulation of the Problem of Plateau," presented to the American Mathematical Society, Oct. 26, 1929, abstract in *Bull. Am. Math. Soc.*, **36**, 50 (1930). "The Problem of Plateau for Two Contours," communicated to the same society, Sept. 27, 1930, abstract in the same publication, **36**, 797 (1930).

² The surfaces bounded by Γ_1 and Γ_2 separately are supposed to be simply-connected; those bounded by Γ_1 , Γ_2 jointly, doubly-connected.

³ The existence of the minimal surfaces M_1 and M_2 is assured by the writer's paper "Solution of the Problem of Plateau," *Trans. Amer. Math. Soc.*, **33**, 1, 263–321 (Jan., 1931), which gave the first general solution of the Plateau problem for a single contour.

⁴ The sense of integration around C_1 , C_2 is such that the circular ring between them is on the left.

⁵ The upper bound of the area of a ring-shaped polygon whose boundaries P_1 , P_2 encircle Γ_2 and are encircled by Γ_1 ; this is not always the same as the lower bound of the area of a ring-shaped polygon whose outer boundary P_1 encircles Γ_1 and whose inner boundary P_2 is encircled by Γ_2 (outer area).